Quantitative MR imaging in the management of multiple sclerosis

ADVANCED QUANTITATIVE BRAIN MR MEASURES

Massimo Filippi

Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy

- WM lesion nature
- Extent and topography of NAWM damage
- Cortical lesions
- Subpial demyelination
- "Diffuse" GM damage
- Regional damage
- CNS functional reorganization
- Conclusions

MRI IN MS WM lesions

	Multiple sclerosis $(n = 3)$	Tuberculous meningitis (n = 3)	Alzheimer's disease (n = 3)	Controls (n = 3)
T cells	91 (55)	541 (860)	11 (9)	11 (24)
Microglia/macrophages	757 (596)	2301 (1449)	552 (218)	544 (252)
Extent of demyelination	41 (23)	1 (1)	0 (0)	0 (0)
Oligodendrocytes	23 (14)+/ 105 (52)	50 (32)	82 (23)	67 (107)
Neurons	154 (70) ⁺ / 221 (60)"	214 (24)	198 (43)	235 (15)
Axonal spheroids	8 (93) ⁺ / 6 (30) [#]	3 (7)	8 (26)	0 (2)

Neurol 2013

JAMA]

Perivascular: 92% MS vs 35% NMO lesions Hypointense rim: 23% MS vs 2% NMO lesions

Fischer et al, Brain 2013

MRI IN MS WM lesions

Persistent phase rim

- WM lesion nature
- Extent and topography of NAWM damage
- Cortical lesions
- Subpial demyelination
- "Diffuse" GM damage
- Regional damage
- CNS functional reorganization
- Conclusions

MRI IN MS NAWM damage

	EDSS Score			
Independent Variable	r Value	P Value		
T2 LV	0.55	<.001		
WBNAA	-0.49	<.001		
Mean lesion MD	0.50	<.001		
Mean lesion FA	-0.36	.005		
Mean NAWM FA	-0.52	.001		
NAWM FA peak height	0.42	.001		
Mean NAWM MD	0.26	.02		
NAWM MD peak height	-0.31	.007		

Pulizzi et al., Arch Neurol 2007

Filippi et al., JNNP 2000

MRI IN MS NAWM damage 37 CIS patients, 2 years FU

- WM lesion nature
- Extent and topography of NAWM damage
- Cortical lesions
- Subpial demyelination
- "Diffuse" GM damage
- Regional damage
- CNS functional reorganization
- Conclusions

Type I: mixed WM/GM 34%

Type II: intracortical 16 %

WM demyelination WM remyelination Deep grey matter lesion Cortical lesion

C C A A

Type III: subpial cortical

Geurts and Barkhof, Lancet Neurol 2008

50%

Haider et al., JNNP 2014

DIR

vs. SE = +538%; *vs*. FLAIR = +152%

Geurts et al., Radiology 2005

8.0 T

Kangarlu et al., AJNR 2007

	7-T MRI		RRMS (n = 9)		SPMS (n = 7)		Pathology	Pathology
	%	(n)	Mean ± SE	Range	Mean ± SE	Range	(study 1*), %	(study 2*), %
All types	100	(199)	9.4 ± 2.2	2-21	19 ± 6.9	8-53	100	100
Туре I	36.2	(72)	3.9 ± 1.6	1-16	$\textbf{6.2} \pm \textbf{4.0}$	0-26	34	38
Type II	13.6	(27)	1.1 ± 0.4	0-3	2.8 ± 1.5	0-10	16	18
Type III/IV	50.2	(100)	4.4 ± 1.3	0-11	10 ± 2.3	4-17'	50	44

Mainero et al., Neurology 2009

DIR in pediatric MS

D

DIR in CIS (evolution to CDMS)

CLs: 8% pediatric MS, 66% adult MS. Mean CL volume: 0.002 ml (SD=0.009) pediatric MS 0.2 ml (SD=0.3) adult MS (p=0.0003)

	Sensitivity	Specificity	Accuracy	OR
DIS Polman 2005	74 %	73%	74%	7.9
DIS Montalban 2010	86%	42%	61%	4.3
DIS Filippi 2010	77%	93%	86%	47.3

Filippi et al., Neurology 2010

CLs and cognitive impairment

Age, CL volume, and NCV independent predictors of the cognitive impairment index: R²=0.55, p<0.001

CLs and clinical disability accumulation

107 relapse-onset MS patients, 3 years FU

Baseline CL volume: entire group: B=0.511; p<0.001 RRMS: B=0.512; p<0.001 SPMS: B=0.495; p<0.001

Calabrese et al., Ann Neurol 2010

CLs and disease evolution

334 relapse-onset MS patients, 5 years FU

Age: OR 1.2, p =0.001 Baseline CL volume: OR 1.7, p <0.001 Baseline cerebellar cortical volume: OR 0.2, p <0.001

Calabrese et al., Ann Neurol 2013

48 PPMS patients, 2 years FU

Baseline CL volume: B: -0.525, p <0.001 **Baseline T2-WM-LV:** B: -0.448, p <0.001

Calabrese et al., Neurology 2009

- WM lesion nature
- Extent and topography of NAWM damage
- Cortical lesions
- Subpial demyelination
- "Diffuse" GM damage
- Regional damage
- CNS functional reorganization
- Conclusions

MRI IN MS Subpial demyelination

Inner cortical MTR

Outer cortical MTR

Samson et al., Mult Scler 2014

- WM lesion nature
- Extent and topography of NAWM damage
- Cortical lesions
- Subpial demyelination
- "Diffuse" GM damage
- Regional damage
- CNS functional reorganization
- Conclusions

MRI IN MS "Diffuse" GM damage

54 PPMS, 5-year FW & EDSS

Baseline EDSS: OR: 0.48, p = 0.03 GM MD: OR: 1.21, p = 0.005 Nagelkerke R²: 0.44

Rovaris et al., Brain 2006

73 relapse-onset MS, 8-year FW & EDSS GM MTR: OR 0.97, p=0.03 Lesion MTR % change: OR 0.88, p=0.02

Nagelkerke R²: 0.28

Agosta et al., Brain 2006

73 relapse-onset MS,13-year FW & EDSS

Baseline GMF: OR 0.79, p=0.01

C index: 69%

Evolution to SPMS:

Baseline T2 LV (OR=1.13, p=0.005) Baseline GMF (OR=0.71, p=0.04) C-index: 84% **Cognitive deterioration:**

Baseline average GM MTR (OR=0.87, p=0.03) Baseline disease duration (OR=1.50, p=0.08) C-index: 97%

Filippi et al., Neurology 2013

- WM lesion nature
- Extent and topography of NAWM damage
- Cortical lesions
- Subpial demyelination
- "Diffuse" GM damage
- Regional damage
- CNS functional reorganization
- Conclusions

MRI IN MS Regional damage / Thalamus

Thalamic fraction vs cognitive test

Thalamic connectivity defined regions (CDRs)

ectivityCortico-thalamic(CDRs)tractsCI (22) vs CP (30) MS

Frontal CDR Motor CDR Post-Central CDR Posterior Parietal CDR Temporal CDR Occipital CDR

Damage of specific cortico-thalamic tracts explained global cognitive dysfunction and impairment of selected cognitive domains better than all other MRI variables

Bisecco et al., Hum Brain Mapp 2015

MRI IN MS Regional damage / Hippocampus

Hippocampal atrophy

Hippocampal DG hypertrophy

Brain Struct Funct 2013

Hippocampal atrophy vs PASAT test

Rocca et al., Hum Brain Mapp 2015

MRI IN MS Regional damage / Spinal cord

Normalized distance along the cord

Atrophy vs EDSS Atrophy vs EDSS A C4 C4 C5 C5 C5 F P P

Radiology 2012

/alsasina et al.

42 MS patients Baseline crosssectional area and FA vs. EDSS at follow –up: r = -0.40; p = 0.01

Agosta et al., Brain 2007

- WM lesion nature
- Extent and topography of NAWM damage
- Cortical lesions
- Subpial demyelination
- "Diffuse" GM damage
- Regional damage
- CNS functional reorganization
- Conclusions

MRI IN MS CNS functional reorganization

DMN in progressive MS patients

Correlations between \downarrow **DMN fluctuations and:**

PASAT (r=0.42, p<0.001) CC FA and JD (r from 0.54 to 0.87, p<0.001) Cingulum FA (r=0.83, p<0.001)

Rocca et al., Neurology 2010

DMN in pediatric MS patients

CI explained by: • cingulum FA • CC MD

• R precuneus RS FC C-index=0.99

Rocca et al., Neurology 2014

MRI IN MS **CNS functional reorganization**

Small world network: high clustering coefficient, short characteristic path length

- **Shortest path length**
- **Highest degree**

Connecter hub

Highest clustering coefficient (its

neighbours are all neighbours of each other)

properties

Regiona

MRI IN MS CNS functional reorganization

Functional hubs 246 MS (34 % CI) *vs* 55 controls

Rocca et al., Brain Struct Funct 2014

Hippocampal structural connectivity Edge graphical properties

Llufriu et al., ECTRIMS 2015

- WM lesion nature
- Extent and topography of NAWM damage
- Cortical lesions
- Subpial demyelination
- "Diffuse" GM damage
- Regional damage
- CNS functional reorganization
- Conclusions

MRI IN MS Conclusions

