

Magnetic Resonance Imaging in Multiple Sclerosis

VUmc (

VU University MS Center Amsterdam

Measuring GM damage in MS: the technicalities

Hugo Vrenken

ESMRMB-MAGNIMS Teaching Course "GM damage in MS as glanced by MRI: measurement, interpretation and clinical application" Edinburgh, October 1st, 2015

Disclosures for Hugo Vrenken: Research grants from Novartis, MerckSerono, Pfizer, Teva. Speaker honoraria from Novartis. All funds paid directly to his institution.

Outline

- Measuring GM atrophy in MS
- Visualizing focal lesions in MS GM
- Probing diffuse damage in MS GM

MEASURING GM ATROPHY IN MS

Multiple sclerosis

Focal lesions in the white matter

- Not only a white matter disease
- Grey matter is also affected ... how?

7

Moraal et al., Eur Radiol 2008

• Lesions

- Not only a white matter disease
- Grey matter is also affected ... how?

Moraal et al., Eur Radiol 2008

- Lesions
- Diffuse tissue damage

Vrenken et al. Radiology 2006

- Not only a white matter disease
- Grey matter is also affected ... how?

Moraal et al., Eur Radiol 2008

0.0025 - Control GM Lesions -PP MS NAGM 0.0020 0.0015 0.0010 0.0020 - RR MS NAGM SP MS NAGM Diffuse tissue damage ΔWMF ΔGMF ΔBPF 0.2 0.1 1000 1500 00 2000 %Change Per Year +/- S.E.M. T1 (ms) 0 -0.1 Vrenken et al. Radiology 2006 -0.2 -0.3 -0.4 -0.5 -0.6 □ HC □ CIS □ CIS->RRMS □ RRMS □ RRMS->SPMS ■ SPMS Fisher, Ann Neurol 2008

- Atrophy
- Atrophy = neurodegeneration?

Popescu et al., Neuroimage: Clinical 2014

Ceccarelli et al., Neuroimage 2008

Popescu et al., Neuroimage: Clinical 2014

- Diffuse changes
- Atrophy
- Lesions

• Influence of local tissue contrast

- Diffuse changes
- Atrophy
- Lesions
- Influence of atrophy on measurement of ... atrophy

Djamanakova JMRI 2013

VU University MS Center Amsterdam

- Diffuse changes
- Atrophy
- Lesions
- Measured grey matter volumes vary with white matter lesion volume!

Sdika Hum Brain Mapp 2009; Nakamura Neuroimage 2009; Chard JMRI 2010; Battaglini Hum Brain Mapp 2012

"Solution": lesion-filling

Effects of WM lesions: not just at lesion location VUmc

VU University MS Center Amsterdam

 GM volume estimation disturbed throughout brain

Popescu *et al.*, Neuroimage: Clinical 2014

WM lesions: global effects on GM volume vumc

- **FSL-FAST**
- 20 patients, 2 centers

Popescu et al., Neuroimage: Clinical 2014 19

Does lesion-filling solve the problem?

VU University MS Center Amsterdam

- Lesions have to be precisely outlined
- 3D T1-weighted images are of high resolution
- Precise lesion outlines have to be available in 3DT1 space to apply lesion-filling

VISUALIZING FOCAL GM LESIONS

Double inversion recovery (DIR)

- Two inversion pulses
- Optimizing TI₁ and TI₂ to null signal from both WM and CSF
- Retain only GM in controls
- ... + lesions in MS

Pouwels et al. Radiology 2006

Phase-sensitive inversion recovery (PSIR)

- Single inversion pulse
- Phase-sensitive reconstruction

Phase-sensitive inversion recovery (PSIR)

- Single inversion pulse
- Phase-sensitive reconstruction

Favaretto et al. Plos One 2015

DIR and PSIR

Favaretto et al. Plos One 2015

DIR and PSIR

Favaretto et al. Plos One 2015

Is PSIR better than DIR for determining lesion locations?

Sethi et al. Plos One 2013

DIR and PSIR and MPRAGE

Multiple Sclerosis and Related Disorders (2014) 3, 253-257

Is 3D MPRAGE better than the combination DIR/PSIR for cortical lesion detection at 3 T MRI?

Flavia Nelson^{a,*}, Aziz Poonawalla^b, Sushmita Datta^b, Jerry Wolinsky^a, Ponnada Narayana^b

Conclusions: Combination DIR/PSIR at 3 T is superior to 3D MPRAGE for detection of cortical gray matter lesions in MS. The contrast-to-noise ratio of CL appears to be inferior on the MPRAGE images relative to DIR/PSIR

PROBING DIFFUSE GM DAMAGE

Different quantitative MR techniques

- Diffusion tensor imaging
- Magnetization transfer imaging
- Quantitative susceptibility mapping
- T2* mapping

Magnetization transfer imaging

Yaldizli et al. MSJ 2015

Magnetization transfer imaging

Yaldizli et al. MSJ 2015

Quantitative susceptibility mapping

Cobzas et al. JMRI 2015

Acknowledgements

- Structural Brain Imaging Group
 - Houshang Amiri
 - Fabian Bartel
 - Mara ten Kate
 - Yaou Liu
 - Christiane Möller
 - Veronica Popescu
 - Carolina Rimkus
 - Aurélie Ruet
 - Ronald van Schijndel
 - Jorge Simoes
 - Alexandra de Sitter
 - Martijn Steenwijk
 - Adriaan Versteeg
 - Hyon-Ah Yi
- Collaborators VUMC
 - Frederik Barkhof
 - Wiesje van der Flier
 - Jeroen Geurts
 - Joep Killestein
 - Joost Kuijer
 - Jan de Munck
 - Petra Pouwels
 - Bernard Uitdehaag

- External collaborators
 - Carsten Lukas (Bochum)
 - Marco Battaglini, Nicola de Stefano (Siena)
 - Federica Agosta, Massimo Filippi, Mara Rocca (Milano)
 - Mark Jenkinson (Oxford)
 - Charles Guttmann (Boston)
 - MAGNIMS Study Group