

38th ESNR Annual Meeting & Advanced Course Naples, 16-20 September 2015

"Update on MR Imaging features in multiple sclerosis"

Chronic and persistent inflammatory-demyelinating disease of the CNS, characterized pathologically:

Inflammation Demyelination Gliosis Axonal loss

- Most common disabling neurological disease of young adults
- Women affected more than men (2:1)
- Symptoms onset between 20 and 40 years of age
- 2.5 million estimated cases of MS worldwide

Multiple Sclerosis

Most people with MS have a near-normal life expectancy (median survival time from onset is ~7-14 years shorter)

Survival

Survival

Scalfari et al. Neurology 2013 Brùnnum-Hansen et al. Brain 2004

•Up to 60% are no longer fully ambulatory 20 years after onset, with major implications for their quality of life and the financial cost to society

•Cognitive Dysfunction: prevalence 43%-65%

•No curative treatment, although different DMTs significantly decrease the frequency and severity of relapses and delay permanent disability

• Prompt and accurate diagnosis of MS is required

Conventional MRI measures

T2 and CE T1-WI

Post-contrast T1-weighted

T2-weighted (FLAIR)

- Highly sensitive for detecting MS plaques
- Provide quantitative assessment of inflammatory activity and lesion load
- Most important paraclinical tool for diagnosing and monitoring MS

Multifocal WM signal abnormalities: "white spots" (young patients)

Incidental finding

Common (academic institutions)

•Mainly due to overuse and improper interpretation of MRI (non specific findings)

>25% under treatment (difficult to take away)

Increase specificity of MRI findings is highly required

Neuropathy **CNS** infection Metabolic def CNS neoplasm ADEM Other CADASIL Unknown Rheum Fibromyalgia NMO Psych Migraine SVID NSWMA 20 30 40 50 60 70 Frequency chosen by respondents (%) Solomon et al. Neurology 2012

55 year old female with a diagnosis of multiple sclerosis.

Treated with DMDs since 2009

Incidental multifocal WM brain lesions on MRI

normal population aged 18-50 (5-10%) migraine (x4)

Misdiagnosis has significant consequences:

- Patient care
- Health care system cost (overtreatment)

Rudick and Miller. Neurology 2013 Kim et al. Mult Scler J 2013

Diagnostic strategy in subjects with incidental multifocal brain T2 lesions of unknown origin

Comprehensive checklist for evaluation of WM spots

Diagnostic strategy in subjects with incidental multifocal brain T2 lesions of unknown origin

Comprehensive checklist for evaluation of WM spots

Cortical gray matter involvement in MS

focal demyelinated plaques in the white matter

cortical demyelination

demyelinated lesions in the deep grey matter

Kutzelnigg et al. Brain 2005

Cortical gray matter involvement in MS

Trapp and Nave. Ann Rev Neurosci 2008 Lucchinetti et al. NEJM 2012

Juxtacortical lesions (type I)

Courtesy of Dr. García-Merino

T2-FLAIR T2-FLAIR Heukocortical lesion

Lucchinetti et al. NEJM 2011

Intracortical lesions (type II and III)

- cMRI detects <10% of intracortical lesions
- Subpial lesion (III): a highly specific pathological marker of MS
- Cortical lesion detection: Impact on early and accurate diagnosis?

Lucchinetti et al. NEJM 2011

DIR (Double Inversion Recovery)

- ✓ Selective saturation of CSF and white matter (two inversion pulses)
- ✓ Improve the visualization of cortical-juxtacortical and infratentorial lesions
- ✓ Low signal/noise
- ✓ Regional variations in GM signal intensities (differences in T2 relaxation times and in cortical thickness)
- ✓ Low inter-observer concordance of this sequence, particularly for detecting pure intracortical lesions
- \checkmark Not to be used as a stand-alone sequence

Redpath and Smith BJR 1994; 67:1258-63; Geurts et al. Radiology Radiology. 2005;236:254-60; Roosendaal et al. Mult Scler. 2009;15:708-14

Double-inversion recovery sequence Diagnostic value of cortical lesion detection

DIS Polman 2005 DIS Polman 2010 DIS Filippi 2010

At least 2 of the following:

- •1 enhancing or 1 spinal cord lesion
- •1 infratentorial lesion
- •1 cortical lesion

Sensitivity	Specificity	Accuracy	OR	
74 %	73%	74%	7.9	
86%	42%	61%	4.3	
77%	93%	86%	47.3	

DIS, dissemination in space Filippi. *Neurology* 2010

DIR: intracortical vs leukocortical lesions

3D MPRAGE

A significant proportion of cortical lesions on DIR are leukocortical (Nelson et al. Mult Scler 2008)

DIR / T2-FLAIR: intracortical vs leukocortical lesions

0.821

0.838

0.477

0.430

Sethi et al. JNNP 2012 Sethi et al. PLOS One 2014 Geurts et al. Neurology 2011

62 CIS patients (3.0 T) (Vall d'Hebron)

Concordance analysis (two observers)

- Corpus callosum lesions: 0.857
- Subependymal lesions:
- Type I-III lesions (FLAIR):
- Type II-III lesions (DIR):
- Type I lesions (DIR):

Mean of kappa for all coder-pairs	
Agreement (Landis and Koch)	
0.0-0.2 = slight	
0.21-0.40 = fair	
0.41-0.60 = moderate	
0.61-0.80 = substantial	
0.81-1.0 = almost perfect/perfect	

Type I-III lesions

Present in 44% of CIS and in 70% of MS patients

Absent in NMO, migraine...

Calabrese et al. Neurology 2012; Absinta et al. J Neurol 2012; Pareto et al. Am J Neuroradiol in press

Perivenular topography of MS plaques "Dawson's fingers"

Post-mortem pathology studies show central vein in > 90% white matter lesions

Jens Wuerfel Berlin

FLAIR* sequence (SWI+ T2 FLAIR at 3T) Central vein visibility

FLAIR* sequence (3D GRE + 2D FLAIR at 3T) Central vein visibility

7T

A 100 -... Non-MS 100 MS 90 % Perivenous lesions 80 70 % Perivenous lesions 60 ** 50 50 40 40% 30 20 10 0 All lesions Subcortical Periventricular Deep 0 CIS/MS Non-MS

Presence of a central vein could be a marker to discriminate between MS and non-MS WM lesions

Tallantyre et al. Neurology 2011

3D-EPI sequence to rapidly acquire high-resolution T2*-weighted and phase contrast images of the whole brain (3T)

96% of the lesions (123 out of 128 lesions) detected in a MS cohort depicted a central vein (during contrast injection)

Susceptibility-weighted MR imaging

Diagnostic value in Multiple Sclerosis

Source of contrast: mostly deoxygenated blood (veins), non-heme tissue iron, proteins, lipids

Veins mapping

Signal loss in focal lesions

SWI in MS lesions 1.5T / 3T / 4T

Category	Description	1.5 T	3 Т	4 T
A	Uniform darkening of lesions in phase	101 (63 m)	46 (38 m)	72 (33 m)
В	Magnitude lesions not seen with phase	7	32	31
С	Lesions associated with veins	6	3	4
D	Lesions surrounded by a rim of hypointense signal	7	1	3
E	Lesions with central darkening of signal	4	1	1
F	Gray matter lesions (including the basal ganglia)	16	6 (1 m)	5
Total		141	90	116
n = magnitude.				

•Signal loss (increase iron content) inside and outside MS lesions

Susceptibility-weighted MR imaging

Intralesional susceptibility signal (ISS) in MS (3T)

Intralesional susceptibility signal (ISS)

48% of non-enhancing MS lesions 58% of enhancing MS lesions

Rovira et al. ECTRIMS 2013

Likely represents iron-rich macrophages / microglia Myelin loss also contributes

Susceptibility-weighted MR imaging in focal MS lesions

Serial analysis with QS mapping at 3T

Magnetic susceptibility increases rapidly as it changes from enhanced to non-enhanced
High susceptibility values during the first 2-4 years

•Then gradually decreases (susceptibility similar to NAWM)

MS: Lession categories

Myelin debris within macrophages detected with oil red-O

1. Early active

Large, myelin-laden macrophages without iron

2. Center, chronic-active

Small myelin-laden macrophages and occasional iron-containing macrophages

3. Rim, chronic-active

Macrophages with large amounts of iron, but without myelin

4. Chronic silent white matter lesions

No or only small amounts of iron

SWI in T2 lesions (7T) 2D T2*- W FLASH

Wuerfel et al. MSJ 2012

SWI in T2 lesions (7T) 2D T2*- W FLASH

Neuromyelitis optica vs. multiple sclerosis

SWI in T2 lesions (3T) SWI

Migraine vs. multiple sclerosis

ISSonSWIincreases diagnosticspecificityandaccuracy(McDonald criteria)

Rovira et al. ECTRIMS 2015

MS or incidental findings in a young asymptomatic subject?

Ovoid lesions

FLA Juxtacortical lesions Corpus callosum lesion

Juxtacortical lesion

Subclinical spinal cord lesions

Preclinical multiple sclerosis or Radiologically isolated <u>síndrome (RIS)</u>

ISS within lesions

MS or incidental findings in a young asymptomatic subject?

Frontal subcortical lesions

No juxtacortical, corpus callosum lesions

No subclinical spinal cord lesions

Incidental findings

No ISS

Summary

- Wide variety of causes may present with multifocal WM lesions
- MRI is the preferred imaging technique for diagnostic workup
- Radiological interpretation with demographic, clinical history, and lab findings
- Standardized brain (spinal cord) MRI protocol
- Comprehensive checklist for evaluation of WM spots is crucial
- Detection of cortico-juxtacortical lesions, venocentric lesions and intralesional susceptibility signal may increase diagnostic specificity