Natural history & clinical relevance of brain volume changes in MS

Frederik Barkhof

Amsterdam – NL London - UK

Disclosures

- Steering committee and iDMC Biogen, Roche
- Consultant Sanofi-Aventis, Roche, Apitope, GeNeuro, Novartis, Roche, Merck, Bayer, IXICO, TEVA, Sanofi-Genzyme
- Research agreements Toshiba, Philips, GE
- Sponsor NIHR-UCLH-BRC, Dutch Foundation MS Research, TEVA, Novartis, EC-H2020, EC-JU (IMI)
- Editorial board member Brain, Neuroradiology, MSJ, Neurology, Radiology

Literature reviews

- Measurement of atrophy in multiple sclerosis: pathological basis, methodological aspects and clinical relevance. Miller DH, Barkhof F, Frank JA, Parker GJ, Thompson AJ. Brain. 2002 Aug;125(Pt 8):1676-9
- Clinical relevance of brain volume measures in multiple sclerosis. De Stefano N, Airas L, Grigoriadis N, Mattle HP, O'Riordan J, Oreja-Guevara C, Sellebjerg F, Stankoff B, Walczak A, Wiendl H, Kieseier BC. CNS Drugs. 2014 Feb;28(2):147-56
- Brain Atrophy in Multiple Sclerosis: Clinical Relevance and Technical Aspects. Sastre-Garriga J, Pareto D, Rovira À. Neuroimaging Clin N Am. 2017 May;27(2):289-300
- Brain MRI atrophy quantification in MS: From methods to clinical application. Rocca MA, Battaglini M, Benedict RH, De Stefano N, Geurts JJ, Henry RG, Horsfield MA, Jenkinson M, Pagani E, Filippi M. Neurology. 2017 Jan 24;88(4):403-413

Agenda

- Global brain volume in MS marker of atrophy?
 - pathological substrate
 - measurement technique
- Natural history of disease
 - onset of atrophy
 - anatomical pattern
- Clinical significance / predictive value
 - cross-sectional and longitudinal
 - physical disability and cognition

Postmortem MRI – axonal loss

Cortical atrophy – pathology substrate

Neuronal density, neuronal size & axonal density were significant predictors of GM volume

Popescu & Klaver, MSJ 2015 Klaver, MSJ 2016

Imaging irreversible tissue damage

courtesy of Alex Rovira, Barcelona

MCQ-1. Onset of BV loss

When does cerebral atrophy start in MS?

in the progressive phase
 3-5 years before onset of progression
 from the onset of disease
 only in older patients

MCQ-1. Onset of BV loss

When does cerebral atrophy start in MS?

in the progressive phase
 3-5 years before onset of progression
 from the onset of disease
 only in older patients

Atrophy measurement technique

Brain atrophy - techniques

Cross-sectional - segmentation

- Public domain: SIENAX, BPF, Freesurfer
- Proprietary: Neuroquant, MSMetrics, NeuroSTREAM
- VBM (groups)
- Longitudinal registration / deformation
 - Public domain: SIENA, BSI, TBM / Jacobian
 - Propietary: ?
 - VBM (groups)

Atrophy measurement - SIENA

Agenda

- Global brain volume in MS marker of atrophy?
 - pathological substrate
 - measurement technique
- Natural history of disease
 - onset of atrophy
 - anatomical pattern
- Clinical significance / predictive value
 - cross-sectional and longitudinal
 - physical disability and cognition

Brain Health – effect of age & MS

Figure 1. Brain atrophy in many people with MS is faster than usual and proceeds throughout the disease course.^{36,37} This examples illustrates how brain atrophy is accelerated in untreated MS, beginning at 25 years of age.

http://www.msbrainhealth.org/

Neurodegeneration – when and why?

Oksenberg & Barcellos Genes Immun. 2005

Trapp & Nave Ann Rev Neurosci 2008

Neurodegeneration – early & profound

De Stefano, MAGNIMS study group, Neurology 2010

MCQ-2. Compartments affected

Where does brain atrophy occur first?

1) cortex
 2) thalamus
 3) white matter
 4) brainstem

MCQ-2. Compartments affected

Where does brain atrophy occur first?

1) cortex
 2) thalamus
 3) white matter
 4) brainstem

Early thalamic atrophy in MS

Schoonheim M. Neurology 2012

GM predictors of cognition in NMO

Figure 1

Representative deep gray matter segmentations of participants

Liu Y, Neurology 2015

Cord atrophy by MS phenotype

MUCCA – Mean Upper Cervical Cord Area

Daams M, et al. MSJ 2014

Agenda

- Global brain volume in MS marker of atrophy?
 - pathological substrate
 - measurement technique
- Natural history of disease
 - onset of atrophy
 - anatomical pattern
- Clinical significance / predictive value
 - cross-sectional and longitudinal
 - physical disability and cognition

Long-term predictive value of PBVC

- N=261 from 8 MAGNIMS centers with short interval (0-2 yr) MRI
 - pseudo-T1-weighted images and SIENA
- Central atrophy & ΔT2LV helped predicting 10-yr EDSS (R²=0.74)
 - stronger effects of Baseline EDSS, Center, DMT usage

PBVC in RRMS predicts progression

Minneboo JNNP 2008

MCQ-3. Clinical prediction

What are the consequences of brain atrophy?

1) disability progression
 2) conversion from CIS to CDMS
 3) cognitive impairment
 4) all of the above

MCQ-3. Clinical prediction

What are the consequences of brain atrophy?

1) disability progression
 2) conversion from CIS to CDMS
 3) cognitive impairment
 4) all of the above

Brain atrophy rate in CIS

Pérez-Miralles F, et al. MSJ 2013

PBVC in CIS predicts 2nd attack

Pérez-Miralles F, et al. MSJ 2013

PBVC under FTY treatment predicts EDSS

*p<0.05; **p<0.01;****p<0.001

Barkhof, ECTRIMS 2013 Radue, Neurology 2015

PBVC in ASA - sustained progression

RCSP = reach confirmed sustained progression; R=relapse

Horakova D, JNS 2009

Avonex pivotal study – BPF vs EDSS

Changes from Year 2 to Follow-up

Fisher E, MSJ 2000

Avonex 8-yr FU - predicting EDSS 6

Fisher E, Neurology 2002

Brain volume and cognition

- BRB correlates better with NBV that T2LL
 Cognitive index (r=0.427) and SDMT (0.537)
- Computerized testing strongly related with NBV
 - Strong relationship (r=0.68) with speed of attention
- Comprehensive cognitive testing in long-DD
 - Correlates better with NBV (r=0.548) than T2LL
 - Final model selected NDGMV and FA of WM (R² 0.49)

Take home messages

- Whole brain atrophy well studied
 - Reflects neuronal loss and demyelination
 - Neurodegeneration starts early
 - Effect of acquisition/analysis technique
- Clinical relevance established (group-level)
 - Strongest relationship with cognition
 - Long-term predictive value moderate
 - More clear in early (CIS) patients?
- Modification by brain reserve (active/passive)

MAGNIMS Meetings Position papers Reviews Original research Education Fellowship Library Contact us Q

2018 ECTRIMS-MAGNIMS Research Fellowship

Applications are now open

The deadline for application will close on 01 / February / 2018

MAGNIMS (Magnetic Resonance Imaging in MS) is a European network of academics that share a common interest in the study of multiple sclerosis using magnetic resonance imaging techniques.