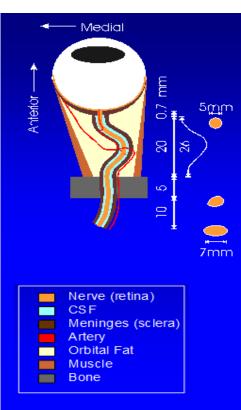
MRI in MS (MAGNIMS) & OPHTHALMIC IMAGING

OPTIC NERVE MRI


M.A. Rocca

Neuroimaging Research Unit, Division of Neuroscience, Scientific Institute and Vita Salute University, San Raffaele Hospital, Milan, Italy

Outline of the presentation

- Imaging the optic nerve
- Diagnosis and differential diagnosis
- Understanding disease pathophysiology
- Conclusions

Imaging the optic nerve

Size of nerve

- High in plane resolution
- Thin slices

Surroundings of nerve (fat, CSF, air-bone interfaces)

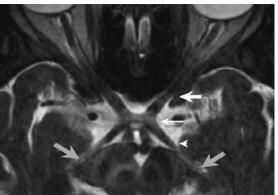
- Fat-saturated sequences
- Fluid attenuated inversion recovery sequences

Motion

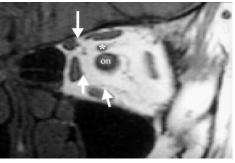
• Relatively fast sequences

Imaging the optic nerve

STIR sequence


3DFT, T2w sequence

Fat-saturated, T2w, FSE sequence

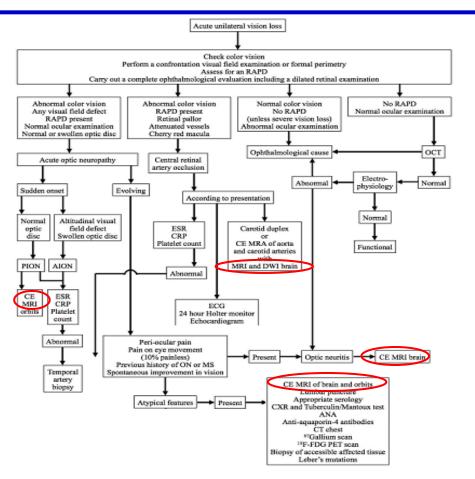


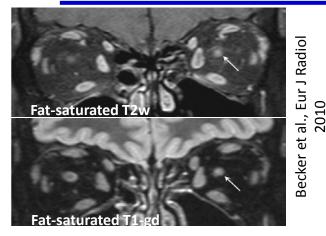
Barker et al., J Neurol Sci 2000

Becker et al., Eur J Radiol 2010

T1w sequence

Aviv et al., Clin Radiol 2005

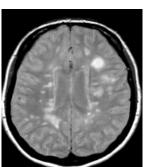

Fat-saturated, Gd-enhanced, T1w sequence


Becker et al., Eur J Radiol 2010

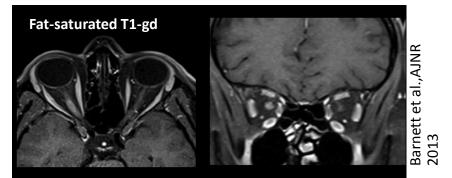
Outline of the presentation

- Imaging the optic nerve
- Diagnosis and differential diagnosis
- Understanding disease pathophysiology
- Conclusions

Hickman et al., Imaging of acute neurologic disease 2014


Multiple sclerosis

- ON lesions are reported in 94–99% of MS autopsy cases (Kolappan et al. J Neurol 2009)
- Optic neuritis is the presenting symptom of MS in 25% of cases and occurs during the disease in


about 70% of cases (Toosy et al., Lancet Neurol 2014)

DIS 2016 MAGNIMS criteria

- At least 2 out of 5 areas of the CNS as follows*:
- \geq 3 Periventricular lesions
- \geq 1 infratentorial lesion
- \geq 1 spinal cord lesion
- ≥ 1 optic nerve lesion
- ≥ 1 cortical/juxtacortical lesion
- * Symptomatic lesion(s) are not excluded from the criteria and contribute to lesion count

NMO Spectrum Disorders

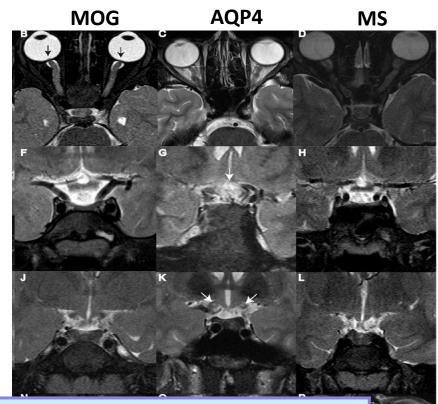
Diagnostic criteria for NMOSD with AQP4-IgG

- 1. At least 1 core clinical characteristic
- 2. Positive test for AQP4-IgG using best available detection method (cell-based assay strongly recommended)
- 3. Exclusion of alternative diagnoses^a

Diagnostic criteria for NMOSD without AQP4-IgG or NMOSD with unknown AQP4-IgG status

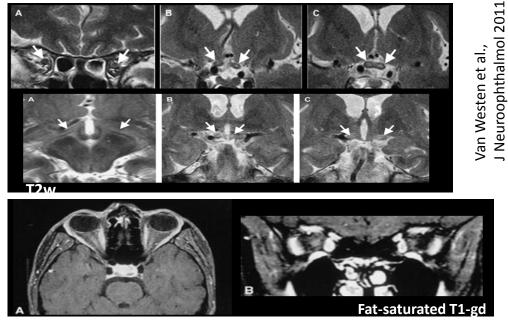
- 1. At least 2 core clinical characteristics occurring as a result of one or more clinical attacks and meeting all of the following requirements:
 - a. At least 1 core clinical characteristic must be optic neuritis, acute myelitis with LETM, or area postrema syndrome
 - b. Dissemination in space (2 or more different core clinical characteristics)
 - c. Fulfillment of additional MRI requirements, as applicable
- 2. Negative tests for AQP4-IgG using best available detection method, or testing unavailable
- 3. Exclusion of alternative diagnoses^a

Core clinical characteristics

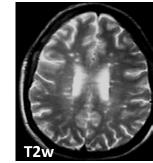

1. Optic neuritis

2. Acute myelitis

- 3. Area postrema syndrome: episode of otherwise unexplained hiccups or nausea and vomiting
- 4. Acute brainstem syndrome
- Symptomatic narcolepsy or acute diencephalic clinical syndrome with NMOSD-typical diencephalic MRI lesions (figure 3)
- 6. Symptomatic cerebral syndrome with NMOSD-typical brain lesions (figure 3)


Wingerchuk et al., Neurology 2015

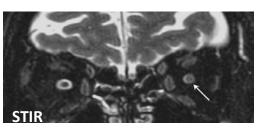
MS vs AQP4 vs MOG optic neuritis **MOG (19)** AQP4 (11) MS (13)


- MOG-ON and AQP4-ON: more commonly bilateral and longitudinally extensive
- MOG-ON tends to involve the anterior optic pathways
- AQP4-ON tends to involve the posterior optic pathways

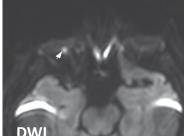
LHON

Vaphiades et al., J Neuroophthalmol 2003

Kuker et al., Eur J Neurol 2007

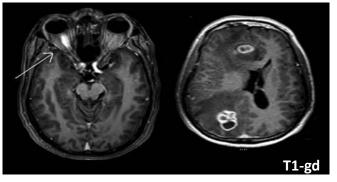


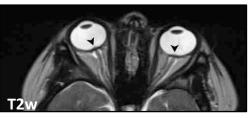
La Russa et al., MSJ 2011


Cawley et al., Ir J Med Sci 2010

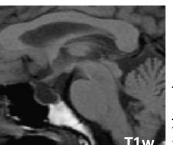
- 27% of LHON patients have aspecific WM lesions
- 25% of LHON patients have MS typical WM lesions (higher risk in females)
- All LMS patients have aspecific and MS typical WM lesions

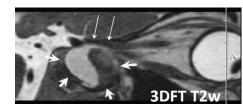
Ischemic optic neuropathy

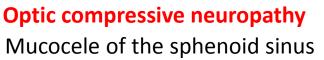

Becker et al., Eur J Radiol 2010


He et al., Semin Ophthalmol 2010

Infectious optic neuropathy


Tuberculosis


Idiopathic intracranial hypertension



Hickman et al., Imaging of acute neurologic disease 2014

Agid et al., Neuroradiology 2006

Becker et al., Eur J Radiol 2010

Outline of the presentation

- Imaging the optic nerve
- Diagnosis and differential diagnosis
- Understanding disease pathophysiology
- Conclusions

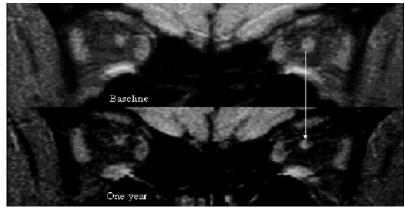
Demyelinating optic neuritis / Lesion features

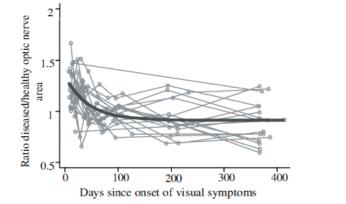
Visual outcome vs longitudinal extent

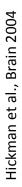
	No. of nerves	Mean extent (no. of abnormal coronal slices)
Good recovery	38	1.84* (range, 0-4)
Poor recovery	6 [.]	3.50* (range, 2-5)
Fast recovery	26	1:54† (range: 0-3)
Slow recovery	10	2.70† (range, 0-4)

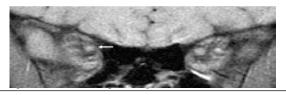
* and \dagger indicate p < 0.01 (chi-squared analysis).

Visual outcome vs site			
Site Poor or slow recover			
Anterior	8/18 (44%)		
Mid-intraorbital	13/26 (50%)		
Intracanalicular	11/15 (73%)		


Miller et al., Neurology 1988


Correlation with visual acuity after treatment


	Length of T2 lesion	Length of Gd enhancing lesion
r	-0,25	-0,3791
р	0,03	0,0012
n	77	70


	Gd enhancement of optic nerve				
	n	Mean visual acuity pre treatment	Mean visual acuity post treatment	Mean visual improvement	Median time onset of ON to MRI
Total	77	$\begin{array}{c} 0.45 \pm 0.04 \\ \text{SEM} \end{array}$	$\begin{array}{c} 0.84 \pm 0.03 \\ \text{SEM} \end{array}$	$\begin{array}{c} 0.40^{*} \pm 0.04 \\ \text{SEM} \end{array}$	5 days
lesion localisation					
intraorbital	55	0.46	0.80	0.35*	5 days
canalicular	34	0.47	0.85	0.39	6 days
intracranial	18	0.39	0.81	0.40	6 days
Chiasmal	3	0.57	0.90	0.33	7 days

Demyelinating optic neuritis / Atrophy

	Control eyes $(n = 15)$	Patient unaffected eyes $(n = 25)$	Patient affected eyes $(n = 25)$
Optic nerve area	12.7 (2.4)	11.8 (2.0)	9.0 (1.5)
(mm ²)		$P_{\rm c} = 0.19$	$P_{\rm c} < 0.001$
			$P_{\rm f} \le 0.001$
RNFL thickness	102.9 (14.6)	94.6 (14.9)	68.7 (18.8)
(µm)		$P_{\rm c} = 0.12$	$P_{\rm c} \le 0.001$
			$P_{\rm f} \le 0.001$
Macular volume	6.83 (0.51)	6.71 (0.33)	6.10 (0.39)
(mm ³)		$P_{\rm c} = 0.49$	$P_{\rm c} < 0.001$
			$P_{\rm f} \le 0.001$

Interocular difference	Optic nerve area
RNFL thickness	r = 0.66
	P < 0.001
Macular volume	r = 0.59
	P = 0.002
Visual acuity (logMAR)	r = -0.50
	P = 0.01
Visual field (mean deviation)	r = 0.40
	P = 0.05
Colour vision (JFM Hue-100 score)	r = -0.34
	P = 0.11

Demyelinating optic neuritis / Microstructural damage MTR 35.3 Ratio of lesion:healthy nerve MTR 8 is in the second seco 34.6 Controls (36) 33.1 MS/unaffected ON (18) MS/affected ON recovery (20) 30.2 29.6 MS/affected ON/ no recovery (21) LHON (20) Average MTR [%] 100 200 300 400 Inglese et al., Arch Neurol 2002 Days since onset of visual symptoms DTI 2 00E-3 *p<0.001 *p<<u>0.001</u> 1.40E-3 0 003-0.800 1 75E-31 1.20E-3* 1.50E-31 0.0025 100E-3 0.600 MD 125E-3 FA A.// λL 800E-4 0 002-1.00E-3 0.400 6.00E-4 7.50E-4 4.00E-4 0.0015 0.200

Controls

Patients

Controls

Group

36

34

32

30

28

26

Patients

* first-onset acute ON

Controls

Patients

Occurs.

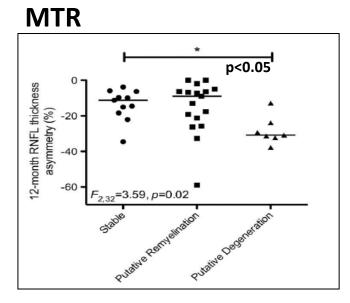
al., Br J Radiol 2011

et

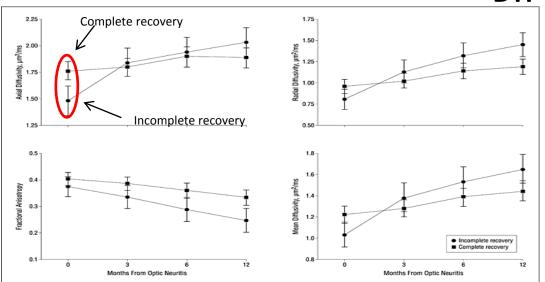
:=

Controls

2 00E-4

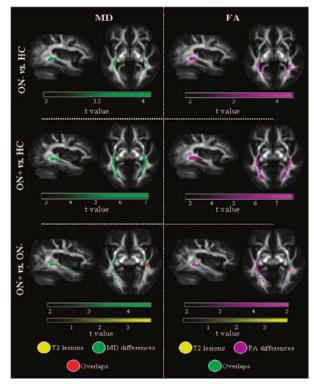

Patients

Group


Hickman et al., Brain 2004

Demyelinating optic neuritis / Prognosis

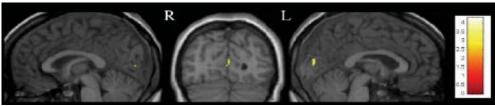
DTI


Association between MTR reduction and worse visual acuity Wang et al., Plos One 2012

Low baseline AD associated 6 month:

- Worse acuity (r=0.4,p=0.03)
- Worse CS (r=0.5,p=0.03)
- Thinner RNFL (r=0.57,p=0.02)
- Lower VEP amp (r=0.55,p=0.01)
- Longer VEP lat (r=-0.4,p=0.04)

Demyelinating optic neuritis / Optic radiations and visual cortex



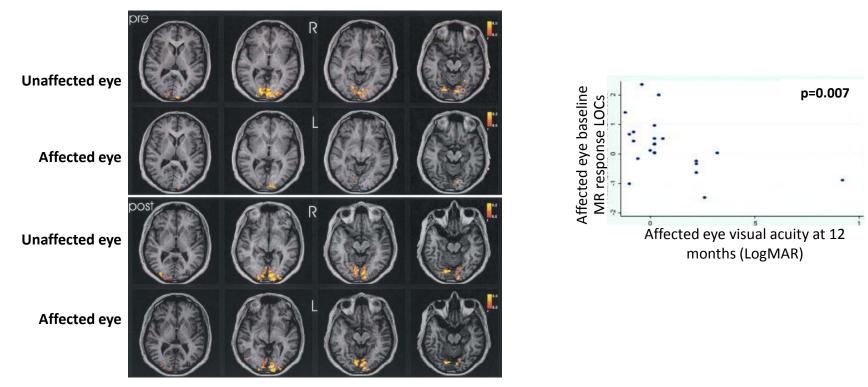
	Dependent variable	es	Joint test P-value	
Optic nerve measure ^a	FA RD (mm ² /s) Standardized regression coefficients (95% CI) from multivariate analyses			
Affected optic nerve area at baseline	-0.081 (-0.336_0.174)	-0.147 (-0.513_0.219)	0.2569	
Affected optic nerve area at 3 months	0.535 (0.207, 0.863)	-0.401 (-0.762, -0.039)	0.0069 ^b	
Affected optic nerve area at 6 months	0.256 (-0.268, 0.779)	-0.347 (-1.243, 0.549)	0.5996	
Lesion length of affected optic nerve at baseline	0.218 (-0.077, 0.513)	-0.469 (-0.874, -0.063)	0.1058	
Lesion length of affected optic nerve at 3 months	-0.074 (-0.327, 0.179)	0.048 (-0.288, 0.384)	0.7985	
Lesion length of affected optic nerve at 6 months	0.117 (-0.128, 0.361)	-0.096 (-0.502, 0.310)	0.5610	
Gd-enhanced lesion length of affected optic nerve at baseline	0.161 (-0.126, 0.449)	-0.276 (-0.663, 0.112)	0.3860	

Tur et al., Brain 2016

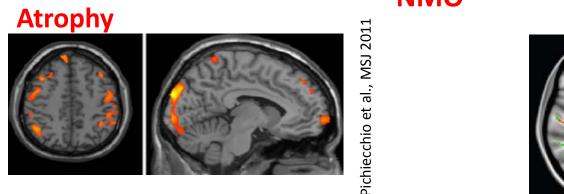
GM MTR

Rocca et al., MSJ 2013

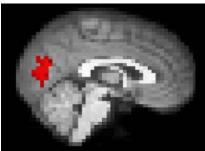
GM MTR in the visual cortex was correlated with the visual acuity at baseline (r = 0.31, p=0.011) and after 3 months (r = 0.30, p=0.011)


Audoin et al., Brain 2006

Demyelinating optic neuritis / Cortical reorganization (fMRI)

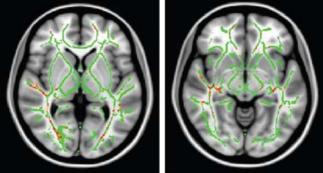

10

Ann Neurol 20


Jenkins et al

Russ et al., J Neuroimaging 2002

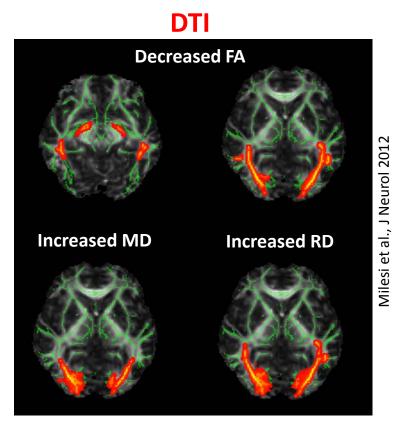
fMRI



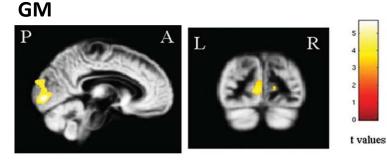
Rueda Lopes et al., J Neuroimaging 2015

Visual cortex RS FC vs FA of the right ON: r-0.36, p = 0.08

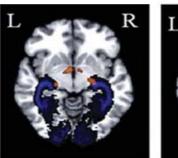
NMO



Pichiecchio et al., MSJ 2011

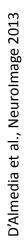

	OR	
	Visual KFS Score	
Diffusion Index	r Value	<i>P</i> Value
Mean diffusivity (×10 ⁻⁴ mm ² /sec)	0.523	.022*
FA	0.106	.666
$\lambda_1 (\times 10^{-4} \text{ mm}^2/\text{sec})$	0.504	.027*
λ_{23} ($ imes$ 10 ⁻⁴ mm ² /sec)	0.285	.236

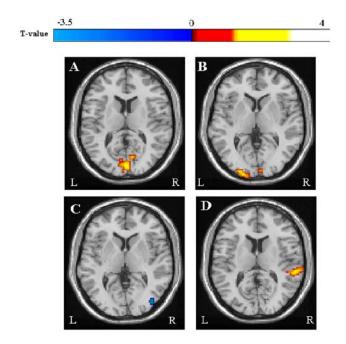
Yu et al., Radiology 2008



LHON

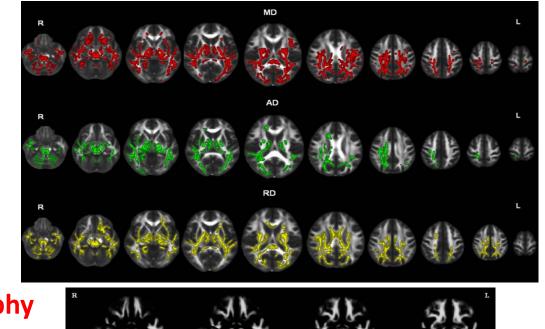
Atrophy



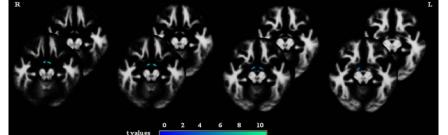

LHON / Cortical reorganization

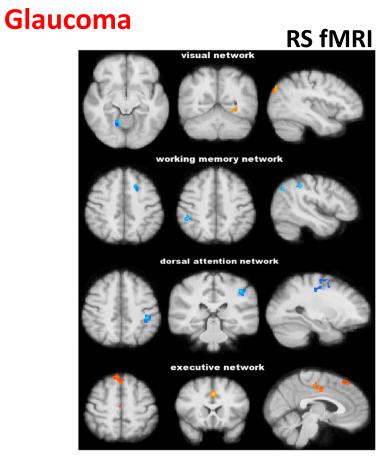
Cortical thickness in LHON carriers

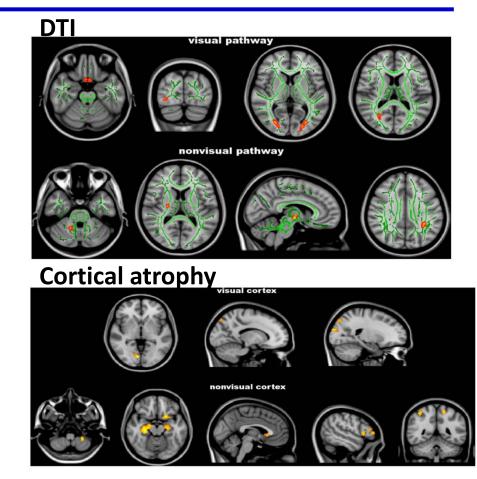
CONTROLS LHON carriers * p<0.05 3.00 ** p<0.01 Mean thickness (mm) 2.75 2.50 2.25 2.00 **V1** V2 V3 Visual Area



RS fMRI


Rocca et al., Plos One 2011


Dominant optic atrophy and OPA1 mutations


Atrophy

DTI

Frezzotti, Giorgio et al., Plos One 2014

Outline of the presentation

- Imaging the optic nerve
- Diagnosis and differential diagnosis
- Understanding disease pathophysiology
- Conclusions

Conclusions

- Although MRI of optic nerve is technically challenging, it is feasible to obtain high quality images of this structure in clinically acceptable scan times
- MRI provides useful pieces of information in the diagnostic work up of patients with acute visual loss
- The contribution of different MR modalities is offering new insights into the pathophysiology of acute optic neuropathies
- It is likely that in the near future novel MR metrics to assess treatment response in clinical trials of acute optic neuropathies will be proposed, validated and used, and possibly enter in dailylife clinical practice